1 2 3 4 5 1 1 9 8 x 1 1 9 8 ( R ) 1 1 9 2 x 5 9 5 ( R ) 7 9 5 x 7 9 5 ( R ) 5 9 5 x 5 9 5 ( R ) 5 9 5 x 2 9 6 . 5 ( R ) S t e p T r e a d C o s t a R e t t a 1 1 9 2 x 2 9 6 . 5 ( R ) E d g e B e a d i n g 1 1 9 2 x 1 2 ( R ) B a t t is c o p a 5 9 5 x 4 5 ( R ) C o r ne r B e a d i n g 1 2 x 1 2 ( R ) S i z e ( m m ) D P G L 0 1 , 0 3 , 0 5 & 0 7 A l l c o l o u r s D P G L 0 1 , 0 3 , 0 5 & 0 7 A l l c o l o u r s D P G L 0 1 , 0 3 , 0 5 & 0 7 A l l c o l o u r s A l l c o l o u r s A l l c o l o u r s A l l c o l o u r s A l l c o l o u r s C o l o u r A v a i l a b il i t y T h ic kn es s 9 9 . 5 9 . 5 9 . 5 9 . 5 9 . 5 9 . 5 9 . 5 9 . 5 F i n i s h N at u r a l N at u r a l N at u r a l N at u r a l G r i p N at u r a l N at u r a l N at u r a l N at u r a l N at u r a l ( R ) R e c t i fi e d s i z e – s q u a r e e d g e w i t h b e v e l . S w a t c h c o l o u r s m ay v a r y f r o m o r i g i n a l . S am ple s s h o u l d b e r e q u e s t e d . D é c or s s h o w n o n n e x t pa g e . 1 2 3 4 5
1 2 F a u l t D é c o r 1 1 9 2 x 5 9 5 ( R ) M i x D é c o r 1 1 9 2 x 5 9 5 ( R ) S i z e ( m m ) A l l c o l o u r s M i x o f D P G L 0 1 – 0 4 ( W a r m ) M i x o f D P G L 0 5 – 0 8 ( Co o l ) C o l o u r A v a i l a b ili t y T h i c kn es s 9. 5 9. 5 Fi n i s h N at u r a l N at u r a l ( R ) R e c t i fi e d s i z e – s q u a r e e d g e w i t h b e v e l . S w a t c h c o l o u r s m ay v a r y f r o m o r i g i n a l . S am ple s s h o u l d b e r e q u e s t e d . 1 & 2