1 2 3 2 3 9 7 x 1 1 9 7 ( R ) 1 1 9 7 x 1 1 9 7 ( R ) 1 1 9 7 x 5 9 7 ( R ) S i z e ( m m ) A l l D CD P B c o l o u r s D CD P B 0 3 , 0 4 , 0 5 & 0 6 A l l D CD P B c o l o u r s D CD P B 0 3 , 0 4 , 0 5 & 0 6 A l l D CD P B c o l o u r s D CD P B 0 3 , 0 4 , 0 5 & 0 6 Co l o u r A v a i l a b i l i t y T h i c kn es s 6 6 6 F i n i s h M a t t G l o s s y M a t t G l o s s y M a t t G l o s s y ( R ) R e c t i fi e d s i z e – s q u a r e e d g e w i t h b e v e l . P a t t e r n o p t i o n s s h o w n o n n e x t pa g e . S w a t c h c o l o u r s m ay v a r y f r o m o r i g i n a l . S am ple s s h o ul d b e r e q u e s t e d . 1 3 2
1 2 2 3 9 7 x 1 1 9 7 ( R ) 1 1 9 7 x 1 1 9 7 ( R ) S i z e ( m m ) A l l D CD P C c o l o u r s A l l D CD P C c o l o u r s Co l o u r A v a i l a b i l i t y T h i c kn es s 6 6 F i n i s h M a t t M a t t ( R ) R e c t i fi e d s i z e – s q u a r e e d g e w i t h b e v e l . M o r e p a t t e r n o p t i o n s s h o w n o n n e x t pa g e . S w a t c h c o l o u r s m ay v a r y f r o m o r i gi n a l . S am ple s s h o u l d b e r e q u e s t e d . 1 2
1 2 2 3 9 7 x 1 1 9 7 ( R ) 1 1 9 7 x 1 1 9 7 ( R ) S i z e ( m m ) A l l D CD P A c o l o u r s A l l D CD P A c o l o u r s Co l o u r A v a i l a b i l i t y T h i c kn es s 6 6 F i n i s h M a t t M a t t ( R ) R e c t i fi e d s i z e – s q u a r e e d g e w i t h b e v e l . M o r e p a t t e r n o p t i o n s s h o w n o n n e x t pa g e . S w a t c h c o l o u r s m ay v a r y f r o m o r i gi n a l . S am ple s s h o u l d b e r e q u e s t e d . 1 2
1 2 2 3 9 7 x 1 1 9 7 ( R ) 1 1 9 7 x 1 1 9 7 ( R ) S i z e ( m m ) A l l D CD P V c o l o u r s A l l D CD P V c o l o u r s Co l o u r A v a i l a b i l i t y T h i c kn es s 6 6 F i n i s h M a t t M a t t ( R ) R e c t i fi e d s i z e – s q u a r e e d g e w i t h b e v e l . D é c or s s h o w n o n n e x t pa g e . S w a t c h c o l o u r s m ay v a r y f r o m o r i g i n a l . S am ple s s h o ul d b e r e q u e s t e d . 1 2