1 2 3 4 5 1 7 9 7 x 7 9 7 ( R ) 1 7 9 7 x 3 9 7 ( R ) 7 9 7 x 7 9 7 ( R ) 7 9 7 x 3 9 7 ( R ) 7 9 7 x 1 9 7 ( R ) P l i n t h S ki r t i n g 7 9 7 x 4 6 ( R ) S i z e ( m m ) D CD M A 0 1 o n l y D CD M A 0 1 o n l y D CD M A 0 1 o n l y D CD M A 0 1 o n l y D CD M A 0 1 o n l y D CD M A 0 1 o n l y C o l ou r A v a i l a b i l i t y T h i c kn es s 1 0 1 0 1 0 1 0 1 0 1 0 Fi n i s h M a t t S m o o t h B u s h H am me r e d M a t t S m o o t h B u s h H am me r e d M a t t S m o o t h B u s h H am me r e d M a t t S m o o t h B u s h H am me r e d M a t t S m o o t h B u s h H am me r e d M a t t ( E s s e n z a ) (R ) R e c t i fi e d s i z e – s q u a r e e d g e w i t h b e v e l . S w a t c h c o l o u r s m ay v a r y f r o m o r i g i n a l . Sam ple s s h o u l d b e r e q u e s t e d . E s s e n z a , S o s t a n z a an d F o r m a p a t t e r n s a v a i l a bl e i n M a t t fin i s h . S t r u t t u r a , R il i e vo an d T r a c c i a p a t t e r n s a v a i l a bl e i n B u s h H am me r e d f i n i s h . A u r a pa t t e r n a v a i l a bl e i n S mo o t h fi n i s h . D é c or s s h o w n o n f o l l o w i n g pa g e s . 1 2 3 4 5
1 2 3 4 5 1 7 9 7 x 7 9 7 ( R ) 1 7 9 7 x 3 9 7 ( R ) 7 9 7 x 7 9 7 ( R ) 7 9 7 x 3 9 7 ( R ) 7 9 7 x 1 9 7 ( R ) S i z e ( m m ) D CD M T 0 1 o n l y D CD M T 0 1 o n l y D CD M T 0 1 o n l y D CD M T 0 1 o n l y D CD M T 0 1 o n l y C o l o u r A v a i l a b i l i t y D 1 , D 2 & D 3 E 1 , E 2 & E 3 F 1 , F 2 & F 3 G 1 , G 2 & G 3 H1 , H 2 & H 3 Pa t t e r n T h i c kn es s 1 0 1 0 1 0 1 0 1 0 Fi n i s h M a t t M a t t M a t t M a t t M a t t ( R ) R e c t i fi e d s i z e – s q u a r e e d g e w i t h b e v e l . S w a t c h c o l o u r s m ay v a r y f r o m o r i g i n a l . S am ple s s h o u l d b e r e q u e s t e d . A l l ab o v e d é c or s a v a i l a bl e w i t h a l t e r n a t e g r o u t o p t i o n s ( e x am ple s sh o w n ) V e r m i g l i o , A z z u r o an d S ol e , u p o n s pe c i a l r e q u e s t . M o r e d é c or s s h o w n o n n e x t pa g e . 1 2 3 4 5
1 2 3 7 9 7 x 7 9 7 ( R ) 7 9 7 x 3 9 7 ( R ) 7 9 7 x 1 9 7 ( R ) S i z e ( m m ) D CD M T 0 1 o n l y D CD M T 0 1 o n l y D CD M T 0 1 o n l y C o l o u r A v a i l a b i l i t y F 4 & F 5 G 4 , G 5 & G 6 H 4 , H 5 & H 6 Pa t t e r n T h i c kn es s 1 0 1 0 1 0 Fi n i s h M a t t M a t t M a t t (R ) R e c t i fie d s i z e – s q u a r e e d g e w i t h b e v e l . S w a t c h c o l o u r s m ay v a r y f r o m o r i g i n a l . S am ple s s h o u l d b e r e q u e s t e d . 1 2 3